https://www.jpl.nasa.gov/news/news.php?feature=6584Páginas

4/6/17

Crippled Atlantic currents triggered ice age climate change


Melting icebergs may have triggered or exacerbated ice age slowdowns to Atlantic Ocean currents.

SCIENCE

By Eric Hand
The last ice age wasn’t one long big chill. Dozens of times temperatures abruptly rose or fell, causing all manner of ecological change. Mysteriously, ice cores from Greenland and Antarctica show that these sudden shifts—which occurred every 1500 years or so—were out of sync in the two hemispheres: When it got cold in the north, it grew warm in the south, and vice versa. Now, scientists have implicated the culprit behind those seesaws—changes to a conveyor belt of ocean currents known as the Atlantic Meridional Overturning Circulation (AMOC).
These currents, which today drive the Gulf Stream, bring warm surface waters north and send cold, deeper waters south. But they weakened suddenly and drastically, nearly to the point of stopping, just before several periods of abrupt climate change, researchers report today in Science. In a matter of decades, temperatures plummeted in the north, as the currents brought less warmth in that direction. Meanwhile, the backlog of warm, southern waters allowed the Southern Hemisphere to heat up.
AMOC slowdowns have long been suspected as the cause of the climate swings during the last ice age, which lasted from 110,000 to 15,000 years ago, but never definitively shown. The new study “is the best demonstration that this indeed happened,” says Jerry McManus, a paleo-oceanographer at Columbia University’s Lamont-Doherty Earth Observatory, and a study author. “It is very convincing evidence,” adds Andreas Schmittner, a climate scientist at Oregon State University, Corvallis. “We did not know that the circulation changed during these shorter intervals.”
To assess the strength of ancient ocean currents over the course of 35,000 years in the middle of the ice age, McManus and his colleagues examined a 10-meter section of a 38-meter sediment core drilled from the bottom of the Atlantic Ocean. The core came from an elevated patch of sea floor known as the Bermuda Rise, where sediments accumulate abnormally fast. The thick layer allows for a more detailed reading of chemical changes within the sediments when they were buried.

Circulation slowdown

Ice Age climate swings may have come from the weakening of powerful Atlantic currents, in which shallow, warm waters move north (red), and deep, cold waters move south (blue).

The researchers measured the ratio of two products of radioactive decay: protactinium-231 and thorium-230. These daughter isotopes come from trace amounts of uranium that are dissolved everywhere in seawater. If the ocean were as still as a bathtub, the two daughter isotopes would bind to sediment particles, settle downward, and become buried at a constant ratio. But thorium gloms on to particles more readily than protactinium. It is therefore buried more readily, whereas protactinium tends to be carried away by ocean currents for burial elsewhere. At places like the Bermuda Rise, where the Atlantic conveyor belt is typically strong, little protactinium ends up in the sediments—except for four instances when the ratio to thorium rose sharply in a matter of decades to centuries, indicating the AMOC’s sudden weakening.
A 2014 study of the AMOC, based on a core from a nearby spot on the Bermuda Rise, found that the currents maintained much of their strength throughout the last glacial period. But because that team took fewer samples from the core and missed the sharp swings in strength. “Now these [new] guys have increased incredibly the data resolution,” says Jörg Lippold, a paleo-oceanographer at the University of Heidelberg in Germany and the leader of the 2014 study. “They found the peaks we missed.”
Still unclear is what triggered the AMOC’s sudden slowdowns. Many of the drops correspond to so-called Heinrich events: rapid releases of icebergs from Canada’s ice sheet. These iceberg armadas often chugged through the Hudson Strait of Canada and may have discharged more ice into the Atlantic Ocean than contained in the entire ice cap of Greenland, raising ancient sea levels by 10 meters. The meltwater brought incredible amounts of freshwater to the North Atlantic, precisely where ocean currents cool off and sink. Because freshwater is less dense than saltwater, it can plug up the AMOC, preventing the overturning and deep water formation the fuels the circulation’s engine. The slowdowns persisted for 1500 years or so, then the AMOC would suddenly regain strength as freshwater melt dissipated and the currents reached a certain threshold, McManus says.
But weak AMOCs are not always accompanied by a Heinrich event, and the timing is fuzzy—some Heinrich events seem to occur after the AMOC already began to weaken. “The Heinrich events may be a response to the change in the overturning circulation rather than a cause,” Schmittner says.
Another question is whether the AMOC—currently known to be in decline—could drop off suddenly today, as depicted in the 2004 movie The Day After Tomorrow, causing temperatures to plummet across northwestern Europe. Schmittner says the past provides an eye-opener. “It’s evidence that this really did happen in the past, on short time scales.” But McManus says that studies looking deeper into the ice ages have found that the 1500-year climate oscillations tend not to be nearly as strong during interglacial periods. “It would suggest that this kind of thing isn’t so likely to happen today,” he says. On the other hand, he adds, “In most interglacials, Greenland didn’t melt … and Greenland is currently melting.”
Posted in: 
DOI: 10.1126/science.aaf5828



Gulf Stream Slowing Down Faster Than Ever, Scientists Say

Home  Climate Science 
Posted on April 12, 2016Kevin Hester 

The Gulf Stream that helps to keep Britain from freezing over in winter is slowing down faster now than at any time in the past millennium according to a study suggesting that major changes are taking place to the ocean currents of the North Atlantic.
Scientists believe that the huge volumes of freshwater flowing into the North Atlantic from the rapidly melting ice cap of Greenland have slowed down the ocean “engine” that drives the Gulf Stream from the Caribbean towards north-west Europe, bringing heat equivalent to the output of a million power stations.’
———- ———-

And similarly: ‘While you were distracted, this climate change warning arrived‘:  ‘With dire warnings of catastrophic sea level rise and superstorms capable of pitching 1,000 tonne mega-boulders onto shorelines, scientist James Hansen sounded an alarm over continued global warming.  
In a video, coinciding with a release of a revised version of paper Hansen wrote  with 18 other authors, Hansen warned of “feedbacks” between the oceans and ice sheets.’
[dk:  like him or not, he does have gravitas here.  He seems more urgent than a year ago…]

Is the Gulf Stream broken? NOAA satellite data sounds alarm


Natural News
Friday, January 29, 2016 by: Jennifer Lea Reynolds
Tags: global warminggulf streamNOAA


(NaturalNews) It's no secret that the weather is becoming more severe as time goes on. From places like Buffalo, New York, which recently got hit with a hefty 5 feet of snow during one storm, to other areas that experience extreme temperature fluctuations from one day to the next, it's obvious that the climate is changing.

National Oceanic and Atmospheric Administration(NOAA) satellite data and details from an animated map called the Earth Wind Map, show that it's not only changing, but that it's changing fast.


Data suggests rapid changes occurring in Gulf Stream temperature


November 2014 data suggests that the stream is exhibiting colder than normal conditions. On top of that, it's taking place in not just one area, but two, further demonstrating that climate changes are underway. For example, both sites showed that the North Atlantic was colder than average, but also that the Gulf itself is colder than normal, which was not the case just one month prior, in October 2014.

The information has many wondering if the Gulf Stream may be broken, something that surely is cause for concern as bizarre weather patterns continue to occur. Unfortunately, it would appear that it is indeed broken and that climate changes will become the norm.

In fact, according to 1000 climate experts who gathered at the World Meteorological Organization (WMO) conference earlier this year, people should prepare to brace themselves for weather changes of apocalyptic proportions in the coming years. Their observations and words of warning are nothing short of alarming, indicatingthat the atmosphere may bebeyond repair. Instead, it's now a matter of dealing with the consequences, much of which has occurred at the hands of humans.


Changing weather conditions "irreversible"


"It's irreversible and the world's population continues to increase, so we must adapt," says Jennifer Vanos, a professor of atmospheric sciences at Texas Tech University.

Experts are adamant that by 2050, airplane passengers will experience about twice as much in-flight air turbulence, ships will encounter gigantic ocean waves well over 130-feet (40 meters)-high and a two percent rise in average global temperature is expected.

What does this mean? It isn't good.

Simon Wang, assistant director of the Utah Climate Center, says "We'll see clouds forming faster and more easily, and more downpours" which he notes will create an influx of flash flooding.

The changes occurring in the Gulf Stream and the climate overall are attributed to many factors, and experts are not ruling our human disruption.


Natural processes as well as human activity responsible for severe climate changes


Experts from NOAA, for example, say that natural factors such as volcanic activity and changes in solar luminosity are behind climate changes. However, they aren't hesitant to suggest that the changes are also brought on by human actions, mainly regarding greenhouse gas emissions.

The Intergovernmental Panel on Climate Change (IPCC) agrees, stating in a recent news release that "It is extremely likely that human influence has been the dominant cause of the observed warming since the mid-20th century."

Thomas Stocker, the IPCC co-chair says, "Continued emissions of greenhouse gases will cause further warming and changes in all components of the climate system. Limiting climate change will require substantial and sustained reductions of greenhouse gas emissions." Stocker explains that heat waves will become more common and last longer, while dry areas will receive less rainfall and wet regions will likely experience more.

The IPCC notes that "Warming in the climate system is unequivocal" expressing that "Each of the last three decades has been successively warmer at the Earth's surface than any preceding decade since 1850, and since 1950 many changes have been observed throughout the climate system that are unprecedented over decades to millennia."

While the changes noted in the Gulf Stream and the overall weather are disturbing, can we really say that they are surprising?

Sources for this article include:

2/4/17

Gulf Stream slowdown tied to changes in Southern Hemisphere



SCIENCE DAILY







Date:



October 5, 2016
Source:

University of Washington
Summary:
The ocean circulation that is responsible for England's mild climate appears to be slowing down. The shift is not sudden or dramatic, as in the 2004 sci-fi movie "The Day After Tomorrow," but it is a real effect that has consequences for the climates of eastern North America and Western Europe. Also unlike in that movie, and in theories of long-term climate change, these recent trends are not connected with the melting of the Arctic sea ice and buildup of freshwater near the North Pole. Instead, they seem to be connected to shifts at the southern end of the planet, according to a recent University of Washington study in the journal Geophysical Research Letters.
"It doesn't work like in the movie, of course," said Kathryn Kelly, an oceanographer at the UW's Applied Physics Laboratory. "The slowdown is actually happening very gradually, but it seems to be happening like predicted: It does seem to be spinning down."
The study looked at data from satellites and ocean sensors off Miami that have tracked what's known as the Atlantic overturning circulation for more than a decade. Together they show a definite slowdown since 2004, confirming a trend suspected before then from spottier data.
Looking at other observations to determine the cause, the researchers ruled out what had been the prime suspect until now: that massive melting and freshening in the North Atlantic could stop water from sinking and put the brakes on the overturning circulation, which moves warmer water north along the ocean's surface and sends cold water southward at depths.
"It appears that this 10-year slowdown is not related to salinity," Kelly said. In fact, despite more ice melt, surface water in the Arctic is getting saltier and therefore denser, she said, because of less precipitation. "That means the slowdown could not possibly be due to salinity -- it's just backwards. The North Atlantic has actually been getting saltier."
Instead, the authors saw a surprising connection with a current around the southern tip of South Africa. In what's known as the Agulhas Current, warm Indian Ocean water flows south along the African coast and around the continent's tip toward the Atlantic, but then makes a sharp turn back to join the stormy southern circumpolar current. Warm water that escapes into the Atlantic around the cape of South Africa is known as the Agulhas Leakage. The new research shows the amount of leakage changes with the quantity of heat transported northward by the overturning circulation.
"We've found that the two are connected, but I don't think we've found that one causes the other," Kelly said. "It's more likely that whatever changed the Agulhas changed the whole system."
She believes atmospheric changes may be affecting both currents simultaneously.
"Most people have thought this current should be driven by a salinity change, but maybe it's the [Southern Ocean] winds," Kelly said.
The finding could have implications for northern European and eastern U.S. climates, and for understanding how the world's oceans carry heat from the tropics toward the poles.
"I think it changes how we think about the whole Atlantic overturning circulation, of which the Gulf Stream is a part," said co-author LuAnne Thompson, a UW professor of oceanography. "It brings back the role of the atmosphere into what's controlling the climate in the high latitudes, that it's not all driven by what's happening in the oceans."
And while a slowdown of the Gulf Stream and broader overturning circulation, for whatever reason, would bring less warm water to eastern North America and Western Europe, any effects are overwhelmed by the overall warming due to global climate change.
"So that whole concept in the movie of New York harbor freezing doesn't make any sense," Kelly said. "If the Gulf Stream doesn't carry as much heat from the tropics, it just means that the North Atlantic is not going to warm up as fast as the rest of the ocean -- it's not going to cool down."

Story Source:
Materials provided by University of WashingtonNote: Content may be edited for style and length.

Journal Reference:
  1. Kathryn A. Kelly, Kyla Drushka, LuAnne Thompson, Dewi Le Bars, Elaine L. McDonagh. Impact of slowdown of Atlantic overturning circulation on heat and freshwater transportsGeophysical Research Letters, 2016; 43 (14): 7625 DOI: 10.1002/2016GL069789

Cite This Page:
University of Washington. "Gulf Stream slowdown tied to changes in Southern Hemisphere." ScienceDaily. ScienceDaily, 5 October 2016. .









Danish Scientist Targets Claim that Gulf Stream Is Slowing


REUTERS   British Antartic Survey/Handout

A Danish climatologist is pouring cold water over another misleading global warming claim.

Thermographic images released by the National Oceanic and Atmospheric Administration (NOAA) last year showed a mysterious blue blob of cold seawater off the coast of southern Greenland and Iceland. At the time, researchers said the cold blob was likely the result of melting from Greenland’s vast ice sheet, with cold water flowing into the nearby Labrador Sea.
This meltwater was presumed to have slowed the Atlantic Meridional Overturning Circulation (AMOC), or Gulf Stream, that sustains temperate weather in much of western Europe, our East Coast, and the UK.

One of the first researchers at the trough of misinformation was Prof. Michael Mann of Pennsylvania State (and “Hockey Stick” fame), who told the Washington Post that this North Atlantic cold blob happened to fit with his just-published study. Mann also suggested that a “dramatic melting” of Greenland’s ice sheet would slow or stop the AMOC, sending the world into an abrupt climate shift as seen in the climatastrophe flick The Day After Tomorrow.
But Tor Eldevik, a Norwegian climate researcher and professor, subsequently told the newspaper Aftenposten in March 2016 that he was “not convinced that the blue blob was caused by melting Greenlandic ice.” Or that it was slowing the Gulf Stream.
Eldevik said that affecting the AMOC would require vast amounts of freshwater coming into contact with more saline ocean water, which would dramatically change salinity levels and possibly slow the current down. That theory might make sense, Eldevik said, except the currents around Greenland simply aren’t strong enough, or large enough, to slow or stop the Gulf Stream.
Another climate researcher, Peter Langen, showed that this melting Greenlandic ice claim has nothing to do with global warming but rather the result of a particularly cold winter. Dr. Langen, a climatologist at the Danish Meteorological Institute (DMI), said that while Greenland’s coastal areas are melting a little, there simply hasn’t been enough freshwater released to affect the ocean’s circulation in any significant way.
In fact, a year-long study of Greenland’s interior ice sheet showed how very little precipitation is lost via evaporation or melting due to the island’s unique “thermal lid.”
The study, published in Science Advances, illustrates how this unique thermal lid prevents snow and ice from escaping the island, allowing the ice sheet to continuously accumulate in mass. And despite computer climate models claiming Greenland’s ice sheet would be one of the first fatalities in a warming world, this first-of-its-kind study offers convincing evidence that Greenland’s ice sheet remains robust and stable.
Langen also noted that ocean modeling from various studies shows that there simply isn’t enough freshwater being released to influence the Gulf Stream at any great distance from Greenland. After reviewing two new studies, Langen adds that the cold spot seen on NOAA’s map is most likely the result of a simple weather anomaly: an unusually cold winter.
Langen says if the cause of the cold blob was meltwater, it would get mixed and thinned out. The Labrador Sea, which is southwest of Greenland’s southern tip, helps to mix surface and deep ocean water. The saltier the water, the more mixing occurs. If the salinity decreases, so does the mixing. Put simply, the freshwater becomes diluted in such a large area that it is unable to slow or stop oceanic circulation.
Langen adds that the blue blob showed up on NOAA’s maps during the very cold winter of 2014-2015, and the frigid weather actually resulted in increased mixing of surface water with the cold, deep seawater. Langen also explained that researchers reconstructed the cooling of water in the area through complex energy computations, making the weather theory the strongest, and most likely, explanation for the North Atlantic cold blob.
It appears that the cold water observed in the North Atlantic was simply due to a cold winter. And yet, climate alarmists readily attempted to spin it into further proof of global warming. But an analysis of the data shows that, once again, such dramatic claims were overstated.
Thomas Richard is a freelance writer living outside of Boston, MA.

Gulf stream slowdown to spare Europe from worst of climate change


PHYS.ORG

11 de julio de, 2016 James Hakner

The Thermohaline Circulation is a vast system of ocean currents that operates like a conveyor belt, transporting warm water from the tropics to Europe. Credit: istockphoto.com/aristoo

Read more at: https://phys.org/news/2016-07-gulf-stream-slowdown-europe-worst.html#jCp

Europe will be spared the worst economic impacts of climate change by a slowing down of the Gulf Stream, new research predicts.


Scientists have long suggested that global warming could lead to a slowdown – or even shutdown – of the vast system of ocean currents, including the Gulf Stream, that keeps Europe warm.
Known as the Thermohaline Circulation, this system operates like a conveyor belt, transporting warm water from the tropics to Europe, where evaporation decreases salinity and density so that the water sinks.
As the world warms, melting icecaps and increased rainfall are widely predicted to slow this process down by flooding oceans with cold freshwater.
Some experts even fear that the process could shut down altogether, plunging Europe into a new ice age.
However, a new study by the University of Sussex, Universidad Nacional Autónoma de México and the University of California, Berkeley finds that, rather than cooling Europe, a slowdown of the Thermohaline Circulation would mean the continent still warms, but less quickly than other parts of the world.
This would lead to a rise in welfare standards in Europe, concludes the research, which is published in the leading economics journal the American Economic Review.
Professor Tol, Professor of Economics in the School of Business, Management and Economics at the University of Sussex, said: "Cooling is probably a good bit more harmful than warming, particularly in Europe. People rightly fear that climate change would cause a new ice age.
"Fortunately, our study finds no cooling at all. Instead, we find slower warming: a boon for Europeans."
Of course, as  redistribute rather than create heat, slower warming for Europe means slightly accelerated warming elsewhere.
The study, therefore, adds to a growing body of evidence predicting a rich/poor divide in the  stakes. Developing countries will be less able to cope with rising sea levels, for example, and - as this research suggests - may warm faster than other, more developed parts of the world.
More information: David Anthoff et al. Shutting Down the Thermohaline Circulation, American Economic Review (2016). DOI: 10.1257/aer.p20161102 



Read more at: https://phys.org/news/2016-07-gulf-stream-slowdown-europe-worst.html#jCp

Gulf Stream is slowing down faster than ever, scientists say

INDEPENDENT



The Gulf Stream that helps to keep Britain from freezing over in winter is slowing down faster now than at any time in the past millennium according to a study suggesting that major changes are taking place to the ocean currents of the North Atlantic.
Scientists believe that the huge volumes of freshwater flowing into the North Atlantic from the rapidly melting ice cap of Greenland have slowed down the ocean “engine” that drives the Gulf Stream from the Caribbean towards north-west Europe, bringing heat equivalent to the output of a million power stations.
Scientists believe that huge volumes of freshwater flowing into the North Atlantic from the rapidly melting ice cap of Greenland have slowed down the ocean “engine” that drives the Gulf Stream (Getty)

However, the researchers believe that Britain is still likely to become warmer due to climate change providing the Gulf Stream does not come to a complete halt – although they remain unsure how likely this is.
Calculations suggest that over the 20th century the North Atlantic meridional overturning circulation – the northward flow of warm surface water and the southward flow of deep, cold water – has slowed by between 15 and 20 per cent, said Professor Stefan Rahmstorf of the Potsdam Institute for Climate Impact Research in Germany.
“There is more than a 99 per cent probability that this slowdown is unique over the period we looked at since 900 AD. We conclude that the slowdown many have described is in fact already underway and it is outside of any natural variation,” Professor Rahmstorf said.
The scientists calculated that some 8,000 cubic kilometres of freshwater has flowed from Greenland into the Atlantic between 1900 and 1970, and this rose significantly to 13,000 cubic kilometres between 1970 and 2000.
Freshwater is lighter than salty water which means that it tends to float on the surface of the ocean and in doing so disturbs the normal sinking of dense, cold saltwater to the ocean floor, which is the main driver of the Atlantic circulation.
Jason Box of the Geological Survey of Denmark and Greenland, who helped to calculate the amount of freshwater flowing into the Atlantic from melting ice caps, said that the slowdown can be linked to man-made climate change.
“Now freshwater coming off the Greenland ice sheet is likely disturbing the circulation. So the human-caused mass loss of the Greenland ice sheet appears to be slowing down the Atlantic overturning, and this effect might increase if temperatures are allowed to rise further,” Dr Box said.
Michael Mann of Pennsylvania State University said: “Common climate models are underestimating the change we’re facing, wither because the Atlantic overturning is too stable in the models or because they don’t properly account for Greenland ice melt, or both.”

15/9/16

“Efecto Ártico” Años muy cálidos, Inviernos muy fríos ¿Hacia una Pequeña Glaciación?

TIEMPO.COM


Inviernos extremos, repotenciados por el Mínimo Solar del 2020 podrían llevar al Hemisferio Norte a una “Pequeña Glaciación”

El "Efecto Ártico” (*)  es una hipótesis que sostengo desde el 2 de diciembre de 2002, cuando fue publicada ("Efecto Ártico” ¿Pequeña Glaciación antes del 2020?) por  EcoPortal de la Argentina y por la Unidad de Comunicaciones e Información Pública del Programa de las Naciones Unidas para el Medio Ambiente- PNUMA- en México.
El “Efecto Ártico” es la denominación al fenómeno del deshielo ártico como consecuencia del calentamiento global sostenido, que afecta el equilibrio térmico del Ártico, el cual  tiende a ser restituido  con ciclos de inviernos extremos.
La hipótesis inicialmente citada, sostiene que las llamadas "Pequeñas Glaciaciones” tienen un elemento en común “un calentamiento global sostenido” de 35 a 40 años crea las condiciones mínimas para su inicio”, destacando como característica que entre mas cálidos sean los años del citado calentamiento, mas intensos y extremos serán sus inviernos, por lo cual  los inviernos del 2012 al 2017 serán gradualmente extremos.
Según la Organización Meteorológica Mundial (OMM) el actual calentamiento global se inició 1.976 cuando se elevó a un ritmo tres veces mayor de lo previsto y el decenio 1998-2007 fue el más cálido desde 1850.
Según la NASA el Calentamiento Global afecta dos veces más las áreas Occidentales del Océano Ártico, que a otras regiones del planeta.
El año 2014 ha sido confirmado como el más cálido para la Tierra desde 1880, por la NASA y la Administración Nacional Oceánica y Atmosférica (NOAA).
 
Por lo anteriormente expuesto, el actual invierno 2014-2015 debe de ser el de mayor intensidad y de las temperaturas mas extremas en por lo menos los últimos 30 años, en especial en algunas regiones del Atlántico Norte (Este de Norteamérica y Europa Occidental) por la incidencia del deshielo ártico sobre la referida región.

El “Efecto Ártico” sostiene que los veranos de los años muy cálidos tienden a extenderse hasta el otoño y los extremos inviernos pueden prolongarse hasta la primavera, lo cual será de mayor intensidad a finales del ciclo 2014-2017.
El “Calentamiento Global Sostenido” cumple este año 39 años, el mas largo periodo cálido desde la Edad Media, en que se produjo un ciclo similar de calentamiento conocido como “Optimo Climático”, el cual fue abruptamente interrumpido por un periodo de bajas temperaturas (del siglo XIV hasta 1850) denominado como  “La Pequeña Glaciación”.
Un breve ciclo de Calentamiento Global Sostenido (de 40 años) y un Mínimo Solar en el año 2020, estaría creando las condiciones mínimas que podría llevar a una “Pequeña Glaciación”.
El Histórico deshielo ártico en el año 2007-2008 afectó el termostato del planeta.
El Ártico es como el termostato del planeta: activa la circulación de las corrientes oceánicas y contribuye  a la distribución del calor entre el Ártico y los trópicos. Un estudio del Centro Nacional de Investigación Atmosférica en Boulder, Colorado demostró que las temperaturas del Ártico, en el verano de las últimas décadas han sido las más altas en  dos mil años.
Según el Centro Nacional de Datos sobre el Hielo y Nieve de la Universidad de Colorado en Boulder, el Ártico perdió 2.500.000 Km2 de hielo permanente debido al derretimiento, la mitad 1.200.000 K2, entre febrero de 2007 y febrero de 2008".
El Albedo es parte de la radiación solar reflejada por una superficie: la nieve y el hielo refleja el 90% y el color oscuro absorbe el 90%., el color del océano ártico es oscuro.
Imaginemos un gran espejo de 2.500.000 Km2 del tamaño del Mar Mediterráneo, que reflejaba el 90% del calor en el Ártico se diluyó y ahora absorbe calor en verano 24 horas al día de mayo a julio, aportando una extrema humedad que se convierte en excepcionales lluvias de primavera a otoño  y extremas nevadas en invierno.
Al aumentar el  caudal de agua dulce sobre el océano Ártico y en la región septentrional del Atlántico como consecuencia del deshielo de los glaciales y de la lluvia extrema (la cual aumenta el caudal de  los ríos que desembocan en la región) estos pierden salinidad, lo cual facilita su congelación y crea las condiciones mínimas para el próximo extremo invierno.
Un ciclo de inviernos árticos repotenciados por un Mínimo Solar a partir del 2020 podrían llevar a una “Pequeña Glaciación”.
El 19 de mayo del 2014 en el taller de clima espacial del Space Weather Prediction Center, de la NOAA, en Boulder, Colorado, científicos demostraron  que el actual Máximo Solar número 24, el cual se  inició el 4/01/2008/es uno de los más débiles de los 23 ciclos solares (de 11 años) documentados desde el año  1755.
Al concluir el actual Máximo Solar se invierte la polaridad del Sol y se inician los ciclos de Mínimos Solares a partir del año 2020.
La baja actividad solar con pocas manchas solares esta asociada con períodos de inviernos extremos que llevan a ciclos de enfriamiento en el hemisferio norte del planeta como el ocurrido entre 1645 y 1715, el cual es conocido como “Mínimo de Maunder” o La Pequeña Edad de Hielo. 
De acuerdo a modelos climáticos un Sol menos activo, implica una mayor presencia de rayos cósmicos que provocan la formación de nubes bajas, lo cual disminuye la entrada de la radiación solar, favoreciendo una disminución de la temperatura y posibilitando un enfriamiento del planeta.
Expertos en el tema vinculan la similitud del próximo mínimo solar con el “Mínimo de Maunder” en una entrevista publicada por el diario BBC de Londres (¿Se quedó dormido el Sol? Rebecca Morelle  /18/01/2014).
Según la doctora Lucie Green, del laboratorio de ciencia espacial de la University College London, de Londres, “Existen indicios muy fuertes de que ahora el Sol está actuando de la misma forma que cuando ocurrió en el mínimo de Maunder".
Y de Mike Lockwood, profesor de física ambiental espacial, de la Universidad de Reading, Reading, (Berkshire, Inglaterra) “el Sol esté cada vez menos activo: Un análisis del núcleo de hielo, que registra un largo periodo de actividad solar, sugiere que esta disminución de la actividad es la más rápida que se ha visto en 10.000 años”.
El deshielo ártico y el  Mínimo Solar una  vía  a la “Pequeña Glaciación”
Un estudio publicado el 6 Mayo del 2012 en la revista Nature Geoscience realizado por un equipo de científicos europeos del Centro Alemán de Investigación en Geociencias (GFZ), demostró que un mínimo solar ocasiono un enfriamiento brusco(menos de una década) en  Europa Occidental hace 2.800 años, con  afectación de patrones de viento y aumento de la humedad.
Un informe del Instituto Real de los Países Bajos para la Investigación Marina (4/04/2011), demostró que el deshielo ártico había aumentado el contenido de agua dulce del Ártico en un 20% desde la década de 1990, en cerca de 8.400 kms3, equivalente a toda el agua en el lago Michigan y el Lago Huron juntos, o al doble del volumen de agua del lago Victoria, el más grande de África.
Hasta el presente el agua dulce acumulada en el Ártico, no se ha desplazado sobre el Atlántico, debido a que el patrón de viento no ha variado significativamente, de ocurrir la citada variación, el desplazamiento afectaría la deriva de la cálida Corriente del Golfo (corriente del Atlántico Norte) y la densidad de la fría Corriente de Labrador, lo que llevaría a un periodo de inviernos árticos y con ello al inicio de una “Pequeña Glaciación”, en el Hemisferio Norte.
Es probable que el Mínimo Solar,  pueda incidir con sus bajas temperaturas y altere el “patrón de viento” en la región ártica y con ello desplazar sobre el Atlántico el agua dulce acumulada.
La termosfera aumenta la temperatura durante los "máximos solares", y la disminuye durante los  "mínimos solares".
Según la NASA entre el año 2008–2009, las manchas solares prácticamente desaparecieron y  se produjo la contracción más pronunciada de la termosfera, de dos a tres veces mayor que lo que usualmente ocurre con una baja actividad solar, fue causada en parte por el exceso de dióxido de carbono, el cual al llegar a la referida capa, funciona como un refrigerante extrayendo calor a través de la radiación infrarroja.
De acuerdo a Scripps Institution of Oceanography los niveles de dióxido de carbono medidos en la cima del Mauna Loa en Hawái de diciembre de 2014 a principios de enero de 2015, estuvieron sobre  los 400 ppm.
El experto Bob Ward, director de comunicaciones del Instituto Grantham de Investigación sobre el Cambio Climático y el Medio Ambiente de la Escuela de Londres de Economía y Ciencias Políticas ,aseguro que a última vez en que los niveles de CO2 se mantuvieron de forma estable por encima de 400 ppm fue hace tres millones de años.
De acuerdo a las evidencias científicas expuestas en un mínimo solar de un año (2008-2009) se redujo de dos a tres veces la termosfera.
¿Con  un mínimo solar de 11 años, en cuantas veces  se reduciría la termosfera con una Atmosfera cargada con mas 400 ppm de CO2 y como se afectaría la temperatura del planeta?

Erik Quiroga Ambientalista, 
Promotor de la creación del Día Internacional de la Preservación de la Capa de Ozono, aprobado por la Asamblea General de las Naciones Unidas (Resolución 49/114 del 23/01/95) promovido el 16 de septiembre.